Pomysł wprowadzenia łańcucha kodującego obce białko do komórki narodził się w latach 90. XX wieku. Idea produkowania pożądanych białek wydawała się bardzo obiecująca. Zakładano, że można w ten sposób leczyć wiele chorób. Skłonienie organizmu do syntetyzowania brakujących enzymów pomagałoby leczyć wrodzone wady metaboliczne, cukrzycę czy chorobę Parkinsona. Czynniki wzrostu mogłyby pomóc w naprawie uszkodzonych tkanek.
Czytaj więcej
Już dwa koncerny pochwaliły się wysoce skuteczną szczepionką na Covid-19. Mogły je stworzyć tak szybko, ponieważ zaczęły nad nimi pracować, zanim jeszcze rozpoczęła się pandemia. Tylko że wtedy marzyły o szczepionce przeciw nowotworom.
Węgierska biochemiczka Katalin Karikó zajmowała się terapią immunologiczną nowotworów, kiedy usłyszała o rzeczonym pomyśle. Uczulenie organizmu na białka komórek nowotworowych dawało perspektywę na zlikwidowanie choroby siłami samego organizmu. Niezależnie jednak od wkładanego wysiłku, eksperymenty rozbijały się o jedną przeszkodę. Po wprowadzeniu do organizmu RNA zawierającego informacje o obcych białkach układ odpornościowy natychmiast rozpoznawał intruza i bezwzględnie go atakował, błyskawicznie unicestwiając. Nawet najlepiej przygotowana matryca mRNA stawała się bezużyteczna. Kolejne eksperymenty zawodziły, jednak Katalin Karikó wspólnie z Drew Weissmanem – immunologiem z bostońskiego uniwersytetu – znaleźli na to sposób. Podmienili niektóre nukleotydy w łańcuchu na takie, które nie występowały w organizmie. Łańcuchy mRNA z syntetycznymi nukleotydami oszukiwały układ odpornościowy organizmu – zamiast włączać alert „uwaga obcy" i aktywować obronę, powodowały odmienną reakcję, sugerując, że to jakiś tajemniczy nieznajomy, ale taki, którego można zostawić w spokoju. I o to dokładnie chodziło naukowcom. Jednocześnie zmienione cząsteczki nie wpływały na produkcję białek w rybosomach.
- Dzięki temu odkryciu udało się skrócić proces, dzięki czemu szczepionkę podajemy tylko jako stosunkowo krótką cząsteczkę mRNA i cały trik polegał na tym, aby ta cząsteczka była cząsteczką stabilną. Normalnie mRNA jest cząsteczką dość niestabilną i trudno byłoby wyprodukować na ich podstawie taką ilość białka, która zdążyłaby wywołać reakcję immunologiczną w organizmie. Ta Nagroda Nobla jest m.in. za to, że udało się te cząsteczki mRNA ustabilizować, podać do organizmu i wywołują one odpowiedź immunologiczną, uodparniają nas na na wirusa, być może w przyszłości bakterie, mogą mieć zastosowanie w leczeniu nowotworów - powiedziała po ogłoszeniu laureatów prof. dr hab. Katarzyna Tońska z Instytutu Genetyki i Biotechnologii, Wydziału Biologii UW.