Elektron w atomie może się poruszać podobnie jak planetoidy trojańskie w Układzie Słonecznym. Dotychczas sądzono, że takie zachowanie cząstek elementarnych pojawia się tylko wtedy, gdy elektron jest sterowany przez zewnętrzną falę świetlną.
Ale planetarny ruch elektronu w atomie może być stabilny. Udowodnili to teoretycznie profesorowie: Iwo Białynicki-Birula z Centrum Fizyki Teoretycznej PAN i Zofia Białynicka-Birula pracująca w Instytucie Fizyki PAN. Oboje są autorami artykułu opublikowanego w najnowszym wydaniu magazynu naukowego Physical Review. —W pewnych warunkach elektron naprawdę samodzielnie krąży wokół jądra atomowego i potrafi to robić bardzo długo — powiedziała prof. Białynicka-Birula.
Fizyka klasyczna traktuje elektrony jak ujemnie naładowane kulki poruszające się po orbitach wokół jądra atomowego o dodatnim ładunku elektrycznym. Model ten przypomina układ planetarny. Ale w teorii kwantów fizycy mówią tylko o prawdopodobieństwie znalezienia elektronu w określonym miejscu w pobliżu jądra atomowego. Zamiast krążenia po orbicie jest otaczająca jądro chmura prawdopodobieństwa wykrycia elektronu. Kwantowy opis atomów, w przeciwieństwie do klasycznego, został potwierdzony eksperymentalnie.
W 1994 roku grupa naukowców (był w niej prof. Białynicki-Birula) przewidziała, że w pewnych sytuacjach elektron w atomie może się zachowywać klasycznie: krąży wokół jądra.
Inspiracją dala naukowców były ruchy planetoid trojańskich w Układzie Słonecznym. To drobne ciała niebieskie, które grupują się w tzw. punktach libracji planet, miejscach, gdzie równoważą się siły grawitacyjne Słońca i danej planety i innych, mniej istotnych sił. Z pięciu punktów libracji, dwa są najważniejsze, bo tylko wokół nich ruch jest stabilny. Znajdują się na orbicie planety, jeden przed nią, drugi za. Ciało niebieskie w pobliżu takiego punktu krąży jednocześnie wokół niego i wokół gwiazdy. W Układzie Słonecznym planetoidy trojańskie można znaleźć w takich punktach na orbitach planet: Jowisza, Saturna, Neptuna i Marsa.